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Abstract
To explore Mars, NASA sent a robot ''Curiosity'' which has
many goals including Martian climate, geology, and the
preparation for future human exploration. NASA has
successfully overcome many challenges in terms of the
complexity of the technology, Mars conditions and space
problems. The mission of Curiosity has a powerful take-
home message for the orthopaedic community: the
design of a realistic training simulator is possible, which
requires time, resources, and great effort. In this article,
we detail orthopaedic 3D collection (O3DC). This paradigm
was the result of discussion of the challenge in
orthopaedic simulations discussed by many scientists.
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O3DC: Strategies
The great challenge of the orthopaedic innovation is to

develop a transition strategy in a large scale, in order to
transport the advanced achievements in the technology
framework and the pilot projects for the benefit in research.
Mediouni et al. [1] mentioned the trends and challenges in
orthopaedic simulation. For that purpose, we need a universal
common language that facilitates international exchanges.
Orthopaedic 3D Collection (O3DC) is a platform that facilitates
the design of the training simulator. The architecture of the
platform, which has three principal aims is illustrated in figure
1:

• A 3D database of all surgical instruments (section 2).
• A good comprehension of biology can help to simulate the

different levels of bone (section3).
• Using a 3D simulation, we can redefine a new classification

of fractures (section 4).

Based on these three aims, the surgeons can evaluate the
performance of the simulation, in which we are able to make a
difference between expert and novice, otherwise between the
experimented and inexperienced orthopaedist. O3DC is a
multidisciplinary project that needs many researchers in
different fields (orthopaedic, biology, mathematics, physics

and computer science). Today, to ensure achievement of
O3DC, we need a translational researcher [2] to identify new
research discoveries in the biological field and clinical
problems. He must ensure coordination between researchers
in a transparent, organized and structured way.

Figure 1: Architecture of O3DC.

3D Collection of Surgical Tools
Among the challenges to perform a simulator is the

unavailability of 3D surgical instruments. In the literature,
there are several 3D databases for industry such as Aim @
Shape [3], The Stanford 3D Scanning Repository [4], and 3D
Warehouse [5]. Today, to achieve an efficient orthopaedic
simulator, we need a specific database for surgical instruments
which can be accessible online. 3D objects can be performed
by a technology of acquisition such as a Kinect camera [6] and
a 3D scanner or 3D modelling software [7]. The visual quality
plays an important role in the efficiency of the simulation. The
different stages of pre-processing are described by Mediouni
[8] (Figure 2).
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Figure 2: 3D Orthopaedic instruments have been designed
in Russian Ilizarov Scientific Center for Restorative
Traumatology and Orthopaedics.

Simulation of Bone's Proprieties
The bone has a homogeneous and complex material

structure at many length scales. In order to understand
mechanical properties, we must distinguish the different levels
of hierarchical structure of the bone. Figure 3 shows four levels
which are: (1) macrostructure, (2) microstructure, (3) sub-
microstructure, (4) nanostructure. The simulation of
mechanical properties needs a model that explains the
mechanism of interaction between different layers to improve
surgeons' knowledge in materials and structural level. At
macrostructure, the properties depend on the nature of the
bone (cortical and cancellous). For example, the structural
properties are important to determine the global stress
analyses. At microstructure, osteoporosis is the subject of
active research. The osteons properties were determined for
various stress modes: tension [9], compression [10], shear [11]
and flexion [12]. To complete the microstructural analysis of
bone tissue, the evaluation of mechanical properties of
cortical bone seems necessary, particularly as the number of
studies on the human cortical bone is relatively low. At sub-
microstructure, the mechanical property is a major element in
understanding bone anisotropy. On the scale of the
nanostructure, the bone tissue can be considered as a
composite material constituted of an organic matrix in which
are inserted minerals. According to Fratzl et al. [13],
hydroxyapatite crystals grow essentially in the intermolecular
spaces of the collagen fibrils. The largest dimension of the
crystals is aligned along the axis of the collagen fibrils. The
shape, location and quantity of mineral extrafibrillaire remain
unknown and subject to controversy despite the presence of
crystals on the surface of the fibrils.

Using medical imaging becomes an important tool to
simulate the bone architecture. Odgaard [15] discusses the
usefulness of three-dimensional imaging to quantify trabecular
architecture (Figure 4), which helps surgeons for studying the
mechanical proprieties of cancellous bone, we need a
compressive test. We can distinguish two major problems
which are: (1) the absence of the standard model that can
describe completely the mechanical proprieties, (2) the results
provided are not of good quality for different reasons:

temperature effects [16], storage [17], and viscoelasticity [18].
Parkinson et al. [19] have mentioned many features that we
can distinguish from a 3D representation of cancellous bone:
bone volume, density, trabecular thickness, and trabecular
separation.

Figure 3: Hierarchical structural organization of bone [14].

In addition, other features, such as degree of anisotropy,
structural model index and connectivity density, can be
calculated. With all the layers and the complexity of the
characteristics, which include different details, the simulation
of a bone remains a major challenge in orthopaedics.

Figure 4: Micro-and nano-CT [20]

Classification of Fractures
There are over 6.2 million bone fractures in the U.S. each

year [21]. The recognition and classification of fractures
become a necessity for an effective treatment. The Judet and
Letournel system [22], which is a traditional system based on
the X-ray, does not answer to complex fractures. Today, with
the 3D simulations, radiologists must reclassify fractures.
Matsushigue [23] explains 3D reconstruction images (CT) to
improve the classification of the proximal extremity of the
humerus. Using the alphanumeric system, the
Arbeitsgemeinschaft für Osteosynthesefragen Association
grouped the humerus fractures into 27 groups (Figure 5). 3D
(CT) provides many advantages to identify the fracture and
help surgeons make a decision for the treatment. Many studies
of 3D imaging of acetabular fractures have been cited in the
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literature [24-29]. This fracture is tricky because of the
complex spatial anatomy.

Figure 5: Normal annotated x-ray [30], Lateral surface-
rendered 3D CT image shows the acetabulum [31]

Evaluation of Simulation
In literature, there are some evaluation models of surgical

simulations [32-36]. Unfortunately, there is no standard model
to validate the assessment followed by orthopeadic
community. Among the O3DC missions, is to provide an
evaluation model for the gestures performed by surgeons to
reduce each fracture (simple and complex). Generally, the
validation is performed in the presence of a surgeon who
discusses the effect of the simulation with his students [37].
Today, we can speak about the development of metric
methods that can allow simulators to be autonomous. Sewell
et al. [38] discuss the method of automated feedback in the
context of a mastoidectomy simulator. The question arises: Is it
possible to apply this model in orthopaedics?

Conclusion
This project is a call for orthopeadists to provide more

research in 3D medical images to align with the complexity of
fractures and diseases in the bone. The sentence mentioned
by Dr. Pedowitz [39] can summarize our article:

“I think the changes we are going to see in resident
education will be quite profound over the next decade or so.”
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